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Abstract--The present numerical study examines bifurcation sequences in Rayleigh-Brnard convection 
for small aspect ratio enclosures. The three-dimensional rectangular enclosure has insulated sidewalls. The 
top wall is cooled and the bottom wall is heated, both isothermally. The Boussinesq approximation is 
invoked with the exception of temperature dependent viscosity of the fluid. The numerical simulations 
closely model specific experiments. Accordingly, the mean Prandtl number is set to 5 and the aspect ratios 
are set to 2.42 and 1.23. The computations exactly match the bifurcation sequence observed in the 
experiments while increasing the Rayleigh number, which is steady state ~ periodic --, quasi-periodic 
steady state. It is established that the counter-intuitive transition from quasi-periodic to steady dynamical 
behavior with an increase in Rayleigh number is due to spatial changes in the mean velocity and temperature 
fields that accompany the bifurcation. The computations span a range of Rayleigh numbers from 2.5 x 103 

to 1.3 × 105. Both unsteady and steady thermal convection are examined in detail. 

INTRODUCTION 

Rayleigh-B~nard convection is a heavily investigated 
area due to its extensive theoretical relevance and 
practical applications. This work represents a con- 
t inuation of our past efforts to investigate the dynami- 
cal behavior of Rayleigh-Brnard convection in small 
aspect ratio enclosures [1-3]. In past works and in the 
present, the Prandtl  number  of the fluid and aspect 
ratios were fixed and the effect of the Rayleigh number  
was studied. 

The Rayleigh-Brnard (referred to as RB for con- 
venience) convection in small aspect ratio rectangular 
parallelepiped enclosures referred to here comprises 
the following physical constraints : 

(1) isothermal top and bottom walls with the bot- 
tom wall heated and the top wall cooled ; 

(2) adiabatic vertical side walls. 

As noted by several experimentalists [4, 5] and numeri- 
cal studies [1-3, 6], the RB system starts with a 
motionless conduction domain below a certain critical 
Rayleigh number  that is a function of the aspect ratios. 
As the Rayleigh number  is increased, steady and time- 
independent convection ensues. Further  increases in 
the Rayleigh number  result in discrete flow transitions 
that increases the spatio-temporal complexity of the 
flow and temperature field, finally leading to turbulent  
flow. For  instance, in the case documented numeri-  

cally by Mukutmoni  and Yang [2, 3], the flow field 
undergoes the following sequence of changes : steady 
state --* periodic ~ quasi-periodic --, chaotic. 

In an extensive set of  experiments, Gol lub and Ben- 
son [4] showed that there are several routes to tur- 
bulent convection for the RB system in small boxes 
(aspect ratios less than 5). The general trend reported 
was that increasing the Rayleigh number  led to an 
increasingly dynamically complex behavior (via dis- 
crete transitions) as noted in the simulations. 
However, one anomalous set of  results was recorded. 

For  aspect ratios of 2.42 and 1.23 and for a mean 
Prandtl  number  of 5, Gollub and Benson [4] observed 
the following dynamical sequence: steady-state 
periodic ~ quasi-periodic ~ steady state. This rever- 
sion to steady state was very unexpected and could 
not  be explained in the experiments which, for the 
most part, were velocity measurements at a given 
point  using LDV techniques. 

In this set of  computations, we attempted to simu- 
late the anomalous bifurcation sequence noted in their 
experiments. If successful, the greater degree of flow 
details available would let us gain further insight into 
the physics of the transition. We hoped that the details 
of  the phenomena would let us satisfactorily explain 
the rather counter-intuitive reversion to steady state 
from quasi-periodicity when the Rayleigh number  is 
increased. At the same time, the calculations would 
let us take a closer and a more detailed look at flow 
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NOMENCLATURE 

A~ aspect ratio in the x-direction, L~/L 
A= aspect ratio in the z-direction, L:/L 
g acceleration due to gravity [m s 2] 
L height of the enclosure [m] 
L~ dimension of the enclosure in the 

x-direction [m] 
L. dimension of the enclosure in the 

z-direction [m] 
Nu Nusselt number 
p nondimensional pressure, scaled by 

po~Z / L2 
Pr Prandtl number, v/~ 
Ra gflATL3/v~, Rayleigh number 
Rac critical Rayleigh number 
t nondimensional time, scaled by L2/~ 
T nondimensional temperature, scaled by AT 
Tc cold wall temperature [°C] 
TH hot wall temperature [°C] 
AT temperature difference, TH-- Tc [°C] 
U nondimensional velocity vector, scaled 

by ~/L 

u nondimensional x-direction velocity, 
scaled by ~/L 

v nondimensional y-direction velocity, 
scaled by ot/L 

w nondimensional z-direction velocity, 
scaled by c#L 

x nondimensional horizontal spatial co- 
ordinate, scaled by L 

y nondimensional vertical spatial co- 
ordinate, scaled by L 

z nondimensional spatial co-ordinate in 
the direction of depth, scaled by L. 

Greek symbols 
c~ thermal diffusivity [m 2 s J] 
/3 coefficient of volume expansion, 1/K 
e nondimensional perturbation 

parameter, ( Ra/ Rac) - 1 
v dynamic viscosity [m 2 s-L] 
p density [kg m 3]. 

and temperature fields over a wide range of Rayleigh 
numbers that span steady and unsteady thermal con- 
vection regimes. 

This paper begins with a discussion on the for- 
mulation of the problem and validation of the code. 
This is followed by a description of the results in the 
subcritical steady convection regime. The subsequent 
sections describe the computations in the periodic and 
quasi-periodic regimes and the reversion to steady 
state from quasi-periodicity. The final sets of results 
are preliminary simulations in the Rayleigh number 
range beyond the second steady state. This paper ends 
with a summary of the major conclusions. 

FORMULATION AND CODE VALIDATION 

The experimental conditions given in Gollub and 
Benson [4] are matched as closely as possible. The 
geometry of the enclosure is shown in Fig. 1. The 
dependent and independent variables are normalized 
by the standard thermal diffusion scales and the height 
of the enclosure. The temperature is normalized such 
that it is set to 0.5 at the bottom wall and - 0 . 5  at the 
top wall. Further details are given in the Nomencla- 
ture. The dimensions of the experimental enclosure 
[4] are 14.66 by 28.85 by 11.94 mm high, which leads to 
aspect ratios of 2.42 and 1.23 in each of the horizontal 
directions. The Boussinesq approximation is used 
with the exception of the temperature-dependent vis- 
cosity. The maximum temperature difference between 
the top and bottom plate is of the order of several 
degrees. In that range, the viscosity of water, the work- 
ing fluid, varies by a maximum of 6%. The rest of the 

transport properties vary by less than 1%. So, it is 
reasonable to assume that all transport properties are 
constant with the exception of the viscosity, which is 
a function of the temperature. The average Prandtl 
number is set to 5.00, in order to match experimental 
conditions [4]. 

The nondimensionalized governing equations for 
the Boussinesq equations are the following [7] : 

V ' U  = 0  (1) 

~u ~p 
- c~t + V ' ( u U )  = - (PrVu) (2) 

c~v c~p 
3t +V" (vU) = - - -  + V ' ( P r V v ) + R a P r  T (3) 

Y 

x Cold top wall z / 

t 
Hot bottom wall 

L× 

Fig. 1. Geometry of enclosure and co-ordinate system. 
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dw dp 
~ -  +V" (wU) = - ~zz + V ' ( P r V w )  (4) 

OT 
-~- +V" (TU) = V2T.  (5) 

The boundary conditions are the following : 

x = 0, A:,; 

O <~ z <~ A : , O <~ y <~ l u = v = w = O ~ x  = O (6) 

z = 0 ,  A=; 

aT 
O<~x<~Ax ,  O < ~ y < ~ l  u = v = w = 0 ~ z = 0  (7) 

y = 0 , 1 ;  

O < ~ x < ~ A , . , O < . z < ~ A :  u = v = w = O  T = 0 . 5 - y .  
(8) 

The temperature-dependent viscosity which is the 
Prandtl number in the nondimensional formulation is 
the following, based on a polynomial curve fit of the 
data tabulated in Incropera and DeWitt [8] for the 
temperature range between 7 and 87°C for water : 

P r ( T )  = 12.316-0.33877T+4.2331 
x10-3T2--1 .967×10 5T3. (9) 

The mean volume averaged Prandtl number was taken 
as 5.00, which corresponds to a mean temperature 
(average of top and bottom wall temperatures) of 
around 33°C. The temperature T is dimensional (°C) 
for equation (9) alone. 

The governing nonlinear partial differential equa- 
tions are solved using the control (finite) volume 
method, QUICK scheme and SIMPLEX algorithm. 
Details are given in Mukutmoni and Yang [1]. A 
first order implicit backward-Euler scheme is used. 
However, the time stepping is chosen rather con- 
servatively. The minimum explicit time step based on 
the CFL criteria is calculated for each control volume 
and this is never exceeded in all the calculations. Typi- 
cally, the time step chosen was varied between one- 
fifth and one-third of the explicit limit. 

An exhaustive validation and grid refinement study 
has been reported for RB convection in Mukutmoni 
and Yang [2]. The study [2] recommends that as a 
compromise between accuracy and computer 
resources, an average nondimensional horizontal res- 
olution of 0.1 units be observed, along with a res- 
olution of 0.05 units in the vertical direction. Since 
the Rayleigh numbers computed are higher for the 
present study, this average resolution is reduced 
further. As shown in Fig. 2, a 34 x 30 x 24 nonuniform 
grid is used in the x-, y- and z-directions, respectively, 
for a 2.4 : 1 : 1.2 box. 

COMPARISON WITH LINEAR STABILITY THEORY 

The computational results are consistent with some 
theoretical results near the critical Rayleigh number 

for the onset of convection. The critical Rayleigh num- 
ber as a function of the aspect ratios is now well 
established through linear stability theory and has 
been compiled and tabulated in Holland and Raithby 
[9]. This can be checked indirectly by numerical simu- 
lation. Other well-established theoretical results are : 

(1) The average magnitude of the velocity is pro- 
portional to the square root of the parameter e [10], 
where ~ = ( R a / R a ¢ ) -  1 near the critical point in the 
supercritical region. This implies that the average kin- 
etic energy would be proportional to e. 

(2) The average Nusselt number is a linear function 
of the parameter e [11]. 

A comparison with results near the onset of con- 
vection indicates that there is qualitative and quan- 
titative agreement between the analytical results for 
these limiting cases. The calculations are carried out 
for the same geometry and using the same grid. In 
Fig. 3(a), the volume-averaged kinetic energy as a 
function of the Rayleigh number has been plotted 
near the critical Rayleigh number. Similarly, in Fig. 
3 (b), the average Nusselt number over any horizontal 
cross section (they should all be the same for steady- 
state conditions due to conservation of thermal 
energy) is plotted as a function of the Rayleigh 
number. In both cases, the limiting behavior is linear 
and consistent with theoretical results. The critical 
Rayleigh number is estimated to be close to 2420 by 
extrapolation to a vanishingly small kinetic energy 
and a Nusselt number of unity. This is consistent with 
the stability results given in Holland and Raithby [11] 
and presented in Table I for comparison. As seen in 
Table 1, the exact aspect ratios of the present case 
were not tabulated in ref. [11]. However, the critical 
Rayleigh number is within bounds of the published 
results for the aspect ratios closest to the one in this 
article. 

STEADY AND OSCILLATORY CONVECTION 

According to the experiments of Gollub and Benson 
[4], the bifurcation phenomena depend not only on 
the parameters (Rayleigh number, Prandtl number 
and aspect ratios), but also on the initial conditions. 
In the subcritical range (before the first bifurcation), 
it is therefore natural that we match the time-inde- 
pendent flow field of the experiments. If the flow field 
is regular like a roll, it is possible to generate the 
required flow structure using sinusoidal velocity per- 
turbations as initial conditions. This was done in 
Mukutmoni and Yang [1], and the same technique is 
used here as well. 

For the present set of experiments, a two-roll pat- 
tern parallel to the short side was the required mean 
flow. In Fig. 4(a), the flow field at the vertical mid- 
section perpendicular to the roll axis is shown in terms 
of the velocity vectors at a Rayleigh number of 4 × 104. 
The flow consists of two steady, symmetric and coun- 
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Fig. 2. Nonuniform grid of the computational domain : (a) x y plane ; and (b) z y plane. 
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Fig. 3. (a) Volume averaged kinetic energy as a function of Rayleigh number; and (b) average Nusselt 
number over a horizontal cross-section as a function of Rayleigh number. 

te r - ro ta t ing  rolls tha t  are most ly  two-dimensional .  
Figure 4(b) shows the velocity field at  vertical mid- 
section parallel  to the roll axis. The velocity vectors 
show tha t  the three-dimensional  effects are confined 
to the side-walls only. 

The con tours  of  the t empera ture  field show the same 
quasi two-dimensional  structure.  Figure 4(c) indicates 
a two-roll  symmetr ic  pat tern.  The isotherms show tha t  
the fluid rises in the middle and  descends a long the 

sides. Figure 4(d), a perpendicular  section, shows that  
the isotherms are stratified except at  the ends, which 
is due to three-dimensional  end effects. 

Using the field variables at  Ra = 4 ×  10 4 as the 
initial condit ions,  the Rayleigh n u m b e r  is increased in 
steps of  10 4 , keeping all the o ther  parameters  fixed. 
The calculat ions indicate tha t  the flow becomes 
uns teady at a Rayleigh n u m b e r  of  5 × 10 4. To inves- 
t igate the dynamical  na ture  of  the flow field, the local 
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Table 1. Critical Rayleigh numbers as a 
function of aspect ratios as listed in [I l]. 
The critical Rayleigh number for the pre- 
sent study was 2420 for aspect ratios of 2.4 

and 1.2 

A. 
Ay 1.00 2.00 

2.00 2789 2276 
2.50 2754 2222 

variables were analyzed as a function of  time in greater 
detail. Accordingly, the time series of  the u-velocity at 
the nondimensional coordinate (1.753, 0.738, 0.918) 
was looked into. The spectral amplitudes of  the time 
series of  8192 points and a nondimensional time step 
of  5 x 10 5 for a Rayleigh number of  6 x 104 are shown 
in Fig. 5(a). The time series for the same is shown 
in Fig. 5(c). Unless otherwise stated, the same local 
variables are used throughout  this study. 

The spectral amplitudes that are calculated using 
the standard Cooley Tukey F F T  algorithm indicate 
that the flow is periodic with a fundamental  frequency 
of  44 nondimensional units, which corresponds to a 
frequency of  0.05 Hz in the experiments. The exact 

frequency was not reported in the experiments. 
However,  all frequencies reported by Gol lub and Ben- 
son [4] were of  the same order of  magnitude in the 
other similar cases. For  example, for aspect ratios 
of  3.5 and 2.1 and Ra = 3.6 × 104, the fundamental  
frequency was 0.067 Hz [4]. As seen in Fig. 5(a), there 
are higher harmonics to the fundamental  frequency 
as well. 

At a Rayleigh number between 7 x 104 and 8 × 104, 
the system undergoes a bifurcation to quasi-periodic 
flow. As seen in Fig. 5(b), the spectral amplitudes 
indicate that the new low frequency is added to the 
system at a Rayleigh number of  8 x 104. The additional 
low frequency was 0.003 Hz and is an order of  mag- 
nitude lower than the other independent frequency. 
Figure 5(b) shows some closely spaced peaks that are 
the linear combinations and higher harmonics of  the 
two fundamental  frequencies. The time series for the 
quasi-periodic case shown in Fig. 5(d) shows the slow 
modulat ion of  the amplitudes that typically occur if 
the two independent frequencies differ greatly in mag- 
nitude. 

The quasi-periodic nature of  the flow is more obvi- 
ous when one examines the phase trajectories as 
shown in Fig. 6(a) for the same Rayleigh number. The 
two variables are the u-velocity at (1.753, 0.738, 0.918) 

(a) (b) 

J l "  . . . . . . .  x l  t t  I t  . . . . . . .  x \ l  l ~  ~ . . . . . . .  ~ t  f l  . . . . . . .  ~ l  

\ \ ~  / 1 1  

; f | ; | | l | l t Y t l l t t t l l l l l | | t ~ ,  
t f l t l l I t l l l l l l l l l l f f t 1 1 1 1 1 ,  
f l f f l l f l l l l t t l l I t f f f 1 | l l l t ,  
r I l l l l t t l l l l T t l l f f f f l f l f l t t  
1 1 T 1 1 1 t l l l t l I f l l l f f F f f l f f i :  
i l l t l l t t t t l t l f f f g f t t t l f 1 1 1 ,  
i l t t t l ~ 1 1 1 1 1 1 f l f f t t t t f t l f i r  
l t ~ t ~ t t t l l l l l f t l l t l t l f i j  

(c) (d) 

Fig. 4. Velocity vectors in (a) x-y plane for the section z = 0.7, (b) z-y plane for the section x = 1.0. 
Isotherms for sections (c) z = 0.7 and (d) x = 1.0. All velocities and isotherms are for Ra = 4.0 x 104. 
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Fig. 5. u-Velocity oscillation amplitudes as a function of the frequency: (a) Ra = 6.0 × 104; and (b) 
Ra = 8.0 x 104. u-Velocity as a function of time (c) Ra = 6.0 × 104; and (d) Ra = 8.0 × 104. The u-velocity 

is for the co-ordinate (1.753, 0.738, 0.918). 

and the v-velocity at (1.799, 0.716, 0.918). In geo- 
metrical terms, the trajectories appear to be embedded 
in a two-dimensional projection of a torus. This is 
expected when the dynamical behavior is quasi- 
periodic. In contrast, the phase trajectory for 
Ra = 6 x 104, described earlier and for the same set of  
variables, is a simple closed curve for a system with 
one frequency [Fig. 6(b)]. 

We now look at the structure of the periodic and 
quasi-periodic flow in greater detail. 

SPATIAL DISTRIBUTION OF SPECTRAL 
AMPLITUDES 

The bi furcat ion sequences described thus far are 
identical to those reported in the experiments [4]. The 
critical Rayleigh numbers of the first two bifurcations 
are unfortunately not  listed experimentally and can- 

not  be compared. We do observe that the critical 
Rayleigh number  of the first Hopf  bifurcation is 
higher than the case with a smaller Prandtl  number  
given in Mukutmoni  and Yang [2]. This can be antici- 
pated on physical grounds. A higher Prandtl  number  
implies higher viscosity that would tend to damp out 
unsteadiness and correspondingly lead to higher criti- 
cal Rayleigh numbers for the incipience of oscillatory 
convection. 

It is therefore highly probable that the simulations 
thus far represent a real physically occurring phenom- 
ena. We are then justified in looking at the physics of 
the unsteady flow in greater detail. One very compact 
way of looking at this would be to study the spatial 
distribution of the spectral amplitudes for the different 
frequencies in the entire enclosure. It must be noted 
that, for small boxes, the dynamical behavior is 
simpler. More specifically, all variables at all points in 
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Fig. 6. The phase trajectory between the u and v velocities : (a) Ra = 8.0 x l04 ; and (b) Ra = 6.0 x 104. The 
u-velocity is located at (1.753, 0.738, 0.918). The v-velocity is located at (1.799, 0.716, 0.918). 

the box oscillate with the same frequency and share 
the same dynamical behavior. The field variables that 
represent the dynamical behavior of  the nonlinear 
system can thus be selected arbitrarily. All spectral 
amplitude distributions in this study are for tem- 
perature oscillations. 

Figure 7(a) shows the iso-surface of  the spectral 

amplitudes for the fundamental  frequency (44 non- 
dimensional units) of  the temperature for a Rayleigh 
number of  6 x 104. The iso-surface [Fig. 7(a)] shows 
the physical domain where the spectral amplitudes 
and hence the oscillations are the strongest. Figure 
7(b) shows a horizontal cross-section through the iso- 
surface. We find that the oscillation contours have 
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(a) 

(b) 

120 

(e) ! 
Fig. 7. Spectral amplitudes of temperature oscillations for nondimensional frequency of 44, Ra = 6.0 x 10~: 
(a) iso-surface plot for 0.8 times the maximum amplitude ; (b) in the x _- plane at the section y - 0.75 : and 

(c) in the x y  plane at the section z = 0.61. 

a four-fold symmetry in the horizontal  plane. The 
maximum amplitudes are located near the walls [Fig. 
7(b)]. A vertical cross section through the iso-surface 
[Fig. 7(c)] reveals that  the maximum amplitudes are 
at the top corners. It is obvious that the oscillations 
do not  have a standing wave pat tern along roll axes, 
which was found to be the case for lower Prandtl  
number  fluids and larger geometrical aspect ratios [1, 
2]. Rather,  it consists o f  oscillations emanat ing from 

a source located in the upper corners of  the horizontal 
mid-section perpendicular  to the roll axis. 

One can thus speculate that the fundamental  oscil- 
lation for a small box is due to a "hydraulic j u m p "  
mechanism that has been proposed for side-heated 
cavities [12, 13]. In such a mechanism, the source of  
the oscillation was found to be near the corners as the 
flow moves along the isothermal vertical walls and 
abruptly hits the horizontal  walls as it turns the corner. 
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The mechanism appears to be markedly different from 
the oscillatory instability proposed by Busse [14] and 
co-workers, for infinite RB convection. In such a case, 
time-dependence manifests itself as traveling waves 
propagating along the axes of the rolls. 

The structure of the amplitudes of the higher har- 
monic was found to be almost the same and is there- 
fore not shown. When the flow becomes quasi- 
periodic, we have two independent frequencies. The 
oscillation contours of the higher frequency (44 units) 
are virtually unchanged from the previous funda- 
mental. The lower frequency (three units) was found 
to have a dramatically different structure. The iso- 
surface shown in Fig. 8(a) represents the volume in 
the box with the largest amplitudes of the second 
fundamental frequency. Unlike the larger frequency, 
the maximum oscillations are confined to the cent- 
erline that separates the two rolls and not near the 
corners. 

Vertical cross-sections through the iso-surface [Fig. 
8(b and c)] show that the maximum amplitude is 
restricted to a slab-like volume that divides the two 
rolls along its entire length. However, within this 
volume, the maximum amplitudes occur in a region 
just above the lower wall [Fig. 8(c)]. The four-fold 
symmetry of the oscillation amplitudes that was found 
in the other frequency is found in this case as well. 

The lower frequency appears to be associated with 
slow and periodic increase and decrease of the dimen- 
sions of the two cells. The mechanism of the low 
frequency is the same as what was reported in Mukut- 
moni and Yang [3]. It is conceivable that, if the size 
of the cells were forced to remain unchanged using 
symmetry conditions on a quarter of the com- 
putational domain, the low frequency would be elim- 
inated just as in the other study [3]. However. that 
was not attempted, since it would be a digression from 
the critical issues addressed in this paper. 

REVERSION TO STEADY STATE 

When the Rayleigh number is increased further, the 
flow field changes from quasi-periodic to steady state 
between the Rayleigh numbers of I x 105 and 1.1 × 105. 
The critical Rayleigh number reported in Gollub and 
Benson [4] for this transition is very close to the esti- 
mated critical Rayleigh numbers of the computations 
(Table 2). The transition to steady state, reported 
experimentally and reproduced numerically, is highly 
counter-intuitive. The general expectation is that the 
flow and temperature field would become more com- 
plex in the spatial and temporal sense as the Rayleigh 
number is increased. However, numerical and exper- 
imental evidence, in this case, seems to suggest 
the existence of at least one example that defies this 
trend. 

Figure 9(a and b) shows the velocity field in two 
perpendicular vertical sections. Figure 9(a) represents 
the section in the x y plane. A two-roll structure is 

observed that appears not to be very different from 
the two-roll structure seen before the bifurcation. 
However, the z y section [Fig. 9(b)] reveals dramatic 
changes in the velocity field compared to the sub- 
critical [Fig. 4(a and b)]. We observe a recirculating 
patch in the top-left region. The flow can be approxi- 
mately described as having two unequal and non- 
symmetric rolls in the z y  plane. The mean flow has 
thus changed in subtle but significant ways. The flow 
as a result is more three-dimensional and there is 
periodicity in the z-direction as well. 

The isotherms at the same corresponding sections 
[Fig. 9(c and d)] confirm the same trends. The con- 
tours in the x-y plane are relatively unchanged with 
the exception of a thinner thermal boundary layer. 
However, the one in the z-y plane [Fig. 9(d)] is very 
different from the previous case [Fig. 4(d)]. The rever- 
sion to steady state is confirmed in the time series 
of the u-velocity where an asymptotic approach to a 
steady state is evident [Fig. 9(e)]. It is therefore quite 
obvious that the bifurcation to steady state also 
resulted in a change in the spatial structure to a more 
complex three-dimensional form. Thus, the ap- 
parently paradoxical experimental and numerical 
results can now be reconciled within the existing 
framework. 

Essentially, the reduction in its temporal complexity 
(quasi-periodic ~ steady state) is accompanied by an 
increase in its spatial complexities as a result of sec- 
ondary flows due to bifurcation. It can then be argued 
that the overall complexity increases after the bifur- 
cation, so there is no paradox or anomaly. Another 
way of looking at the phenomena would be to state 
that the secondary flow, as a result of the bifurcation, 
stabilized the unsteady convection of the subcritical. 
A real paradox would have arisen if it was found that 
the transition did not change the mean flow pattern 
and yet reverted to steady state, in which case our 
understanding of the transition phenomena would 
require revision. Fortunately, the transition observed 
is merely unusual or atypical and certainly does not 
require a re-evaluation of the scientific paradigm 
associated with the dynamical behavior of nonlinear 
systems. 

FURTHER BIFURCATION TO OSCILLATORY 
FLOW 

When the Rayleigh number is increased further, 
the flow becomes oscillatory at a Rayleigh number 
between 1.2x 105 and 1.3 x 105. The mean velocity 
field is shown in Fig. 10(a-c) at three perpendicular 
sections. It is seen from the vertical sections [Fig. 11 (a 
and b)], that there are no qualitative changes in the 
flow field compared to the subcritical flow [Fig. 9(a 
and b)] although the magnitude of the velocities is 
higher for the supercritical case. The horizontal sec- 
tion [Fig. 10(c)] indicates that the flow has organized 
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(a) 

Co) (c) 

Fig. 8. Spectral amplitudes of temperature oscillations for nondimensional frequency of 3, Ra = 8.0 x 104 : 
(a) iso-surface plot for 0.8 times the maximum amplitude ; (b) in the x-y plane at the section y = 0.61 ; and 

(c) in the z - y  plane at the section x = 1.2. 

Table 2. Comparison between experimentally observed sequence [4] and present study for Pr = 5.0, A~ = 2.42, A: = 1.23 

Experimental Numerical Critical Ra Critical Ra 
transition transition (experimental) (numerical) 

Steady state to periodic Steady state to periodic N/A Between 5 × 10 4 and 6 x l 0  4 

Periodic to quasi-periodic Periodic to quasi-periodic N/A Between 7 x 104 and 8 x 104 
Quasi-periodic to steady state Quasi-periodic to steady state 1.0 x 10 ~ Between 1.0 x 10 s and 1.1 x 10 -~ 



T h e r m a l  c o n v e c t i o n  in s m a l l  e n c l o s u r e s  123 

(a) (b) 

| t , "  

t 
\ \ ; ~ . . . . . . .  t I 
\ \ \ "~ 

t t . . . . . . .  ~ x L 

| ~  . . . . . . .  " / 1  

% "  - - , i , / /  

• ". ~ d d 

. t t / t  ' ' . , r e  . . . . . .  ~ \ \ \ \ % ~ "  

, t r r t  . . . . . . . . . . . .  ~ I t l t | t l ,  
r t t ~  . . . . . . . . . . . .  T t l l [ l l l ~ ,  
t i l t  . . . . . . . . . . . .  , t t t t t t l ~ ,  
f i r ,  . . . . . . . . . . . . .  , t t l l t t t t ,  
l i t ,  . . . . . . . . . . . . .  . t l l f l / t l ,  

I 1 ~  . . . . . . . . . . . . . . .  e / / / l / t P .  

© (d) 

(c) 

66.8~ , 
66, 7~ 
66.6~ 
2 • , i , r ,  . .  

Fig.  9. Ve loc i t y  v e c t o r s  in (a)  x ~  p l a n e  fo r  t he  sec t ion  z = 0.7,  (b)  z - y  p l a n e  fo r  t he  sec t ion  x = 1.0. 
I s o t h e r m s  fo r  sec t ions  (c) z = 0.7 a n d  (d)  x = 1.0. Al l  ve loc i t i es  a n d  i s o t h e r m s  a r e  f o r  R a  = 1.1 × 10 5. (e) 

u -Ve loc i ty  as  a f u n c t i o n  t i m e  fo r  Ra = 1.1 × 10 5. 
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Fig. 10. Velocity vectors for the time-averaged velocity field for Ra = 1.3 x 105: (a) x y plane for the 
section _- = 0.7 : (b) -'-v plane for the section x = 1.0 ; and (c) .x- z plane for the section y = 0.7. 

itself into four unequal sized rectangular cells in the 
planform. 

A stationary oscillatory flow is seen for 
R a  = 1.3 x 105, with the help of  the velocity time series 
[Fig. l l(a)]. The spectral amplitudes indicate that a 
singly periodic state has been achieved and that the 
fundamental  frequency has increased significantly to 
about  68 [Fig. 11 (b)] compared to the lower Rayleigh 
number case. Previous experimental [4] and numerical 
[2] works indicated that the frequency increased 
slightly with an increase in Rayleigh number. 
However,  such a sharp increase must be due to 
changes in the mean velocity and temperature field. 
A simple closed phase-trajectory conf rms  the single 
frequency dynamical behavior of  the system [Fig. 
I l (c)].  

Further  computat ions at even higher Rayleigh 
numbers were not attempted in this study. According 
to the experiments [4], a spatial change in the mean 
flow field is documented. The dynamical behavior 
changes from quasi-periodicity to intermittency [4]. 
A study of  the intermittency phenomena cer- 
tainly demands our attention. However,  an investi- 
gation at the higher Rayleigh number range would 

require a finer grid and will be the subject of  a future 
study. 

SUMMARY AND CONCLUSIONS 

A numerical investigation was carried out for Ray- 
leigh Bdnard convection in a rectangular box of 
aspect ratios 2.42 and 1.23 and a Prandtl number 
of  5.0, over a wide range of  Rayleigh numbers. The 
simulations accurately modeled the experiments of 
Gollub and Benson [4]. The main goal of  the simu- 
lations was to investigate the counter-intuitive tran- 
sition from quasi-periodicity to steady state that was 
reported in the experiments and not adequately ex- 
plained. The main conclusions in this study are the 
following : 

(1) The numerical results were consistent with the 
limiting theoretical behavior near the critical Rayleigh 
number. In particular, the Nusselt number and the 
volume averaged kinetic energy depended linearly on 
~:. The critical Rayleigh number estimated by extra- 
polation agreed with the tabulated values available in 
the literature. 
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(2) The computat ions were able to reproduce the 
exact sequence of  bifurcations reported in the exper- 
iments and also closely matched the critical Rayleigh 
numbers in cases where the information was available 
from experiments. 

(3) The unsteady convection was analyzed in 
detail• The temperature oscillation amplitudes in the 
periodic regime showed a four-fold symmetry in the 
horizontal plane that was also observed in the time- 
averaged temperature and velocity fields. The 
maximum oscillation amplitudes were found to occur 
at the top corners along the vertical plane of  symmetry 
perpendicular to the roll axes; which suggests a 
"hydraulic jump"- l ike  mechanism. 

(4) For  the quasi-periodic regime, the added fre- 
quency was found to be an order of  magnitude lower 
than the fundamental.  The maximum oscillations 
occurred along the mid-plane that separates the rolls. 
This suggests that the low frequency component  is 
responsible for the slow and pulsating increase and 
decreases of  the cell dimensions. 

(5) The bifurcation from quasi-periodic flow to 

steady state with an increase in the Rayleigh number 
was possible only because the spatial pattern of  the 
flow field underwent changes as well. At a still higher 
Rayleigh number, the flow field changed from steady 
state to periodic and preserved the spatial structure in 
the time-averaged sense. 
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